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Abstract
We show that the usual expression found in the literature, which tries to
generalize the ‘Fermi golden rule’ beyond second order in perturbation, is
(surprisingly) incorrect. After identifying the weak steps of the two usual
derivations, we derive a new expression of this generalized golden rule,
intrinsically very different from the previous one, even though its form may
look similar. We show that this new result already affects the next nonzero term
of the transition probability expansion. From a direct comparison of this new
result with its exact value—as given by the exact evolution operator—we also
show that the usual approaches are inherently quite questionable beyond the
second order in perturbation.

PACS numbers: 31.15.Md, 03.65.-w, 46.15.Ff

1. Introduction

Everyone has learned that the transition rate per unit time from an initial state |ϕi〉 to a set of
final states |ϕf〉 close in energy, due to a coupling V , is given by the ‘Fermi golden rule’ [1–3].
Its derivation is based on the calculation of

Ufi(t) = 〈ϕf |e−iHt/h̄|ϕi〉 (1)

to lowest order in V = H −H0, the initial and final states being eigenstates of the unperturbed
Hamiltonian H0. The Fermi golden rule follows from |Ufi(t)|2 in the large-t limit.

In some advanced textbooks [4–9], higher-order terms in V are calculated. In the large-t
limit, their summation is claimed to give [4]

Ufi(t) ≈ e−i(εf +εi) t/2h̄ [δfi − 2 iπ δt (εf − εi) Tfi] (2)

Tfi = lim
η→0+

〈ϕf |V + V
1

εi −H + iη
V |ϕi〉 (3)
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εi and εf being the energies of |ϕi〉 and |ϕf〉. Although the function δt (ε), defined by [1, 4],

δt (ε) = sin(ε t/2h̄)

π ε
(4)

tends to the Dirac distribution when t goes to infinity, one must keep δt (ε) in Ufi(t) in order to
possibly calculate |Ufi(t)|2 and the transition rate per unit time in a clean way, the square of
the Dirac distribution being meaningless.

The purpose of this paper is to show that, although the expressions (2) and (3) for Ufi(t)

are quite well known, they are, surprisingly enough, incorrect.
The paper is organized as follows.
In a first part, we show why the expression of Tf i given in equation (3) is suspect and we

give some hints on what could be a correct expression.
In a second part, we briefly go through the two usual derivations of the generalized Fermi

golden rule (i.e. the transition rate summed up to all orders in V ) in order to identify possible
origins of the problem. In doing so, we will show why, in contradiction to what is usually
claimed [3, 4], it is not necessary to impose 〈ϕi|V |ϕi〉 = 0 to obtain finite terms in the V
expansion of Ufi(t).

In a third part, we perform a ‘clean’ calculation of the V expansion of Ufi(t) in the large-t
limit and we show that the sum of its dominant terms can be written as equations (2) and (3)
with η replaced by ηt defined by

ηt = 2 h̄/t. (5)

This change, which is one of the main results of our paper, is fundamental since it links t to
ηt : taking the ηt → 0 limit in Tfi then imposes taking it simultaneously in the δt (εf − εi) of
Ufi(t) as

δt (ε) = sin(ε/ηt )

π ε
. (6)

In a last part, we discuss some consequences of our new result. Since Ufi(t) already
differs from the previous one at second order in V , we discuss some possible effects linked
to this difference. By comparing our Ufi(t) for f = i to the exact one—given by the true
evolution operator—we also show that our new result is just the expansion of the exact term up
to second order in (εi −H)/ηt . This thus raises strong doubts on the possibility of obtaining
a generalized Fermi golden rule valid beyond second order in V . There is in fact a profound
conflict between the ‘large-t limit’ and ‘all orders in V ’, t and V being closely coupled in the
exact Ufi(t) through (εi −H)/ηt , i.e. −V/ηt when acting on |ϕi〉.

Before going through these procedures in detail, let us first make a few comments on
some misleading ideas linked to the so-called continuum limit introduced in this problem.
While the Fermi golden rule is known to be valid for final states belonging to a continuum,
one should not conclude that the final states |ϕf〉 are true continuum states. Indeed, the initial
and final states being real physical states, they must be square integrable so that, instead of
〈ϕi|ϕf〉 = δ(f − i) as for true continuum states, we have 〈ϕi|ϕf〉 = δfi (the δfi of equation (2)
has exactly this origin). Actually, the introduction of continuum states is just a mathematical
trick to allow the replacement of sums by integrals at the end of the calculation. By performing
this replacement too early in some terms only, one often obtains spurious singularities, which
cancel out if the discrete aspect of the problem is considered throughout the calculation. From
a physical point of view, one can think of using a continuum limit when the states of interest
are close in energy. The problem is then to know the appropriate energy scale for such an
approximation to be valid. We will show that the final states do behave as a continuum if their
energy differences are small compared with ηt . This parameter ηt , which is the key parameter
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of this problem, corresponds to the characteristic energy of the uncertainty principle below
which precise energy measurements are meaningless; its appearance as the energy scale for
the spectrum of H0 to look like a continuum is thus quite reasonable. The introduction of a
small but finite ηt in the definition of δt (ε) already allows the calculation of the square ofUfi(t)

at first order in V . We show here that, in addition, it allows us to take the continuum limit
properly. This will be crucial when we will calculate and resum the higher-order terms in V .

The condition ‘ηt large compared to the energy difference between eigenstates’ is
somewhat similar to ‘t small compared to the Poincaré time’ [10]. Indeed, for Hamiltonians
having a discrete spectrum—as for finite-size systems—there is a time Tp after which the
system returns to, or extremely close to, its initial state: as

|ψ(t)〉 = e−iHt/h̄ |ψ(0)〉 =
∑
k

e−iEkt/h̄ |φk〉〈φk|ψ(0)〉 (7)

where |φk〉 and Ek are the eigenstates and the eigenvalues ofH , we see that if 1 we can find Tp
such that

(Ek − Ek′) Tp = 2π h̄ Nkk′ (8)

withNkk′ integer for any pair (k, k′), then |ψ(Tp)〉 and |ψ(0)〉differ by a phase factor only (when
these energy differences decrease, Tp increases so that Tp would be infinite for continuous
spectra). The existence of a finite Poincaré time implies that meaningful information on the
large-t limit of Ufi(t) corresponds to t large but not too large in order to have t 	 Tp if one
wants to be in the ‘lifetime’ part of the system evolution. From equation (8), the condition
t 	 Tp also reads

ηt = 2 h̄

t

 2 h̄

Tp
= Ek − Ek′

π Nkk′
= �ε (9)

i.e. ηt larger than a characteristic energy difference between two eigenstates. We will see
below how such a condition appears in a natural way in this problem.

The validity of the continuum limit being physically linked to ηt , it is clearly of importance
to decide whether the large-t limit or the continuum limit has to be taken first. In order to
keep this freedom, we will, in this paper, use discrete final states throughout the calculation
and, just at the end, look at the physical consequences of our result when each one of the two
limits is taken first. Taking them in the wrong order generates inconsistencies such as that
responsible for the incorrect result quoted in equation (3). An additional benefit of working
with discrete final states is that one can use simple perturbation theory. For true continuum
states, one would have to use the analytic dilatation technique [11], which is much heavier and
completely hides the physical interplay between the large-t limit and the continuum limit.

A last comment on the difficulty raised by the continuum limit of having non-normalized
plane waves for the free Hamiltonian eigenstates: one way to overcome this difficulty, rather
traditional, can be to use wavepackets. This procedure is however not very clean as the group of
states then has a narrow energy spread, so this wavepacket is not strictly speaking an eigenstate
of the free electron Hamiltonian. The simple and clean way to deal with this normalization
condition is in fact to put the system in a large box L3: the box then imposes a momentum
quantization in 2π/L, i.e. an energy quantization in 1/L2, so that the energy is close to a
continuum for large L. It is then easy to follow the L dependences over the whole calculation.
Once the quantities of interest have been cleaned up from possible singular terms, one just has
to replace discrete sums over momenta by V/(2π)3 integrals.

1 Such a Tp implies that the (Ek −Ek′ ) differences are commensurable (as for free electrons in a cubic box). If this
is not so, one can show that the probability to return to the initial state is not exactly unity but extremely close to unity.
For the sake of simplicity, we restrict here our argument to the ‘commensurable case’.
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2. Why Tfi cannot be correct

Since

V |ϕi〉 = (H −H0) |ϕi〉 = (H − εi) |ϕi〉 (10)

the matrix element appearing in equation (3) also reads

〈ϕf |V
[

1 +
H − εi

εi −H + iη

]
|ϕi〉 = 〈ϕf |(H − εf)

iη

εi −H + iη
|ϕi〉

= iη

[
−〈ϕf |ϕi〉 + (εi − εf + iη) 〈ϕf | 1

εi −H + iη
|ϕi〉

]
. (11)

For f = i, the above expression inserted in Tf i leads to Tii = 0, the bracket of equation (11)
staying finite when η goes to zero: by inserting the closure relation for the eigenstates of H ,
we can rewrite the second term of this bracket for f = i, as2

Ai(η) = iη
∑
k

εi − Ek − iη

(εi − Ek)2 + η2
|〈φk|ϕi〉|2. (12)

We then note that η2/(ε2 + η2) stays between zero and unity so

Re Ai(η) <
∑
k

|〈φk|ϕi〉|2 = 〈ϕi|ϕi〉 = 1. (13)

Similarly, 0 < |η ε|/(ε2 + η2) < 1/2, so |Im Ai(η)| < 1/2.
It could be objected that if |ϕi〉 is a continuum state, 〈ϕi|ϕi〉 is not unity but infinite.

However, this |ϕi〉 would not be physical, so its time evolution is of no interest.
We thus conclude that the η → 0+ limit cannot be taken for granted in Tfi, otherwise Tii

would be equal to zero and |Uii(t)| would be equal to unity, which is clearly incorrect. If η
is replaced by ηt as shown below in equation (61), the ηt → 0 limit in Tfi and the t → ∞ in
δt (εf − εi) have to be taken simultaneously in Uf i(t). For f = i, the 1/ηt factor of δt (0) then
cancels the ηt factor of Tii to provide a finite |Uii(t)| different from unity, as expected.

3. Usual derivations of the Ufi(t) expansion

There are two standard ways to obtain the V expansion of Ufi(t):

3.1. Derivation based on the state evolution

The most usual procedure relies on the resolution of the Schrödinger equation satisfied by

|ψ(t)〉 = e−iHt/h̄ |ϕi〉. (14)

Expanding |ψ(t)〉 on the eigenstates |ϕk〉 of H0

|ψ(t)〉 =
∑
k

ak(t) e−iεkt/h̄ |ϕk〉 (15)

and inserting this expansion into the Schrödinger equation provides a set of differential
equations satisfied by the ak:

ih̄ ȧk(t) =
∑
k′
Vkk′ ei(εk−εk′ )t/h̄ ak′(t). (16)

2 With a possible integral contribution, if the spectrum of H contains a continuum.
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These coupled equations are solved perturbatively by expanding ak(t) as

ak(t) =
∞∑
n=0

a
(n)
k (t) (17)

with a(n)k (t) of the order of V n.

(i) The zeroth-order term is obvious and reads a(0)k (t) = δki. We then deduce the differential
equation satisfied by a(1)k (t)

ih̄ ȧ(1)k (t) = Vki ei(εk−εi)t/h̄. (18)

While its resolution has to be performed separately for εk �= εi and εk = εi, its solution
can be written using a single expression

a
(1)
k (t) = −Vki�t(εk − εi) (19)

where �t(ε) is defined by

�t(ε) = eiεt/h̄ − 1

ε
for ε �= 0 (20)

= it

h̄
for ε = 0. (21)

Note that εk = εi includes k = i but also any degenerate states of |ϕi〉. For the sake of
simplicity, we will assume in the following that |ϕi〉 is nondegenerate.

(ii) From equations (16) and (19)–(21), we obtain the differential equation satisfied by a(2)k (t)

ih̄ ȧ(2)k (t) = −
∑
k′ �=i

Vkk′ Vk′i ei(εk−εk′ )t/h̄ �t (εk′ − εi)− it

h̄
Vki Vii ei(εk−εi)t/h̄. (22)

Here again, we have to calculate contributions from εk = εi and εk′ = (εk or εi) separately.
However, all these contributions can be written using a single expression

a
(2)
k (t) = −

∑
k′
Vkk′ Vk′i�t(εk − εi, εk′ − εi) (23)

where �t(ε, ε′) is defined for ε′ �= 0 as

�t(ε, ε
′) = �t(ε − ε′)−�t(ε)

ε′
(24)

while for ε′ = 0 we take the limit of the above expression when ε′ goes to zero.
(iii) The same procedure gives the third-order term as

a
(3)
k (t) = −

∑
k′k′′

Vkk′ Vk′k′′ Vk′′i�t(εk − εi, εk′ − εi, εk′′ − εi) (25)

where �t(ε, ε′, ε′′) is defined in terms of �t(ε, ε′) as

�t(ε, ε
′, ε′′) = �t(ε − ε′′, ε′ − ε′′)−�t(ε, ε′)

ε′′
(26)

for ε′′ �= 0, while for ε′′ = 0 we again take the limit of equation (26) when ε′′ goes to
zero. This, in particular, gives �t(0, 0, 0) = (it/h̄)3/3!.

(iv) And so on for the higher-order terms, which are found to have a similar form.

Let us stress that all these a(n)k ’s are finite even if Vii �= 0, in contradiction with many
textbooks, which claim that it is necessary to impose Vnn = 0 (by including these diagonal
terms of V into H0) in order to have finite contributions to the V expansion of ak(t).
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3.2. Derivation based on the evolution operator

The other derivation is based on the integral representation3 of the evolution operator

e−iHt/h̄ =
∫ −∞

−∞

dx

−2iπ

e−i(x+iα)t/h̄

x + iα −H (27)

which is valid for t > 0 and any positive α, the V expansion being obtained from the identity

1

a −H = 1

a −H0
+

1

a −H0
V

1

a −H

=
n∑
m=0

(
1

a −H0
V

)m 1

a −H0
+

(
1

a −H0
V

)n+1 1

a −H . (28)

The two derivations lead to the same result

Ufi(t) =
∞∑
n=0

U
(n)

fi (t) = e−iεf t/h̄
∞∑
n=0

a
(n)

f (t) (29)

provided that we discard the last term of equation (28) in the large-n limit, which is equivalent
to saying that ak(t) can be expanded in powers of V .

It is possible to rewrite these U(n)fi (t) in terms of δt (ε) by noting that

e−iεf t/h̄�t (ε) = 2 iπ e−i(εf +εi)t/2h̄ e+i(ε+εi−εf )t/2h̄ δt (ε) (30)

with δt (ε) defined as in equation (4) for ε �= 0 while for ε = 0 we take δt (0) = 1/πηt , i.e. its
limit when ε → 0. For n � 1, this leads to

U
(n)

fi (t) = −2 iπ e−i(εf +εi)t/2h̄ σ
(n)

fi (t) (31)

where, in view of equations (19), (23) and (25),

σ
(1)
fi (t) = Vfi δt (εf − εi) (32)

σ
(2)
fi (t) =

∑
k′
Vfk′ Vk′i δt (εf − εi, εk′ − εi) (33)

σ
(3)
fi (t) =

∑
k′k′′

Vfk′ Vk′k′′ Vk′′i δt (εf − εi, εk′ − εi, εk′′ − εi) (34)

etc. The δt (ε), δt (ε, ε′), δt (ε, ε′, ε′′), . . . functions are related to each other through

δt (ε, ε
′) = e−iε′/ηt δt (ε − ε′)− δt (ε)

ε′
(35)

δt (ε, ε
′, ε′′) = e−iε′′/ηt δt (ε − ε′′, ε′ − ε′′)− δt (ε, ε′)

ε′′
(36)

etc. The above definition of δt (ε, ε′) is valid for ε′ �= 0 while for ε′ = 0 we take its limit when
ε′ → 0. We use similar definitions for the other functions δt (ε, ε′, . . .). The above σ (n)fi (t) are
exact. In the next section, we will extract from their large-t limit a dominant term with a form
suitable for the summation over n. However, in order to know what ‘large t’ precisely means,
let us reconsider its connection with the Poincaré time.

3 Equation (27) can be quickly checked by inserting the closure relation of the H eigenstates. The right-hand side is
then calculated by using an integration contour C which contains the real axis and the lowest half circle (see figure 1).
For t > 0, the contribution of the half circle gives zero while for any positive α all the poles Ek − iα are in the lowest
half plane, so their contributions do generate all the terms of the left-hand side of equation (27).
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Figure 1. The dots show the possible δt (εk − εi)/δt (0) for two values of t . The upper curve
corresponds to the largest t (i.e. the smallest ηt ). When t increases, the amount of εk which gives
a sizeable δt (εk − εi)/δt (0) decreases. Inset: the integration contour C.

3.3. Connection between ‘large t’ and the Poincaré time

We will restrict ourselves here to f = i since it allows us to pick up the point very simply.
Since δt (0) = 1/πηt , equation (32) gives

σ
(1)
ii (t) = Vii/πηt (37)

for arbitrary t . From equations (33) and (35), we obtain the second-order term of σii(t) as

σ
(2)
ii (t) = − i

πη2
t

Vii +
∑
k′ �=i

|Vk′i|2 e−i(εk′ −εi)/ηt δt (εk′ − εi)− 1/πηt
εk′ − εi

(38)

in which we have used the specific value of δt (ε, ε′) for ε = 0. When t is equal to the Poincaré
time T0p of the Hamiltonian H0—which is of the order of the Poincaré time of H—all the
(εk′ − εi)/πηT0p are integers, so δT0p (εk′ − εi) = 0 for all εk′ �= εi. This leads to

σ
(2)
ii (T0p) = − i

πη2
T0p

Vii +
1

πηT0p

∑
k′ �=i

|Vk′i|2
εi − εk′

. (39)
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From these first two terms, we obtain the expansion of Uii(T0p) as

Uii(T0p) = e−iεiT0p/h̄

[
1 − i

T0p

h̄

(
Vii +

∑
k′ �=i

|Vk′i|2
εi − εk′

)
+

1

2

(
−i
Vii T0p

h̄

)2

+ · · ·
]

(40)

which is nothing but the expansion of e−iε̃iT0p where ε̃i is the energy which tends to εi when V
goes to zero, as obtained from perturbation theory

ε̃i = εi + Vii +
∑
k′ �=i

|Vk′i|2
εi − εk′

+ · · · . (41)

Consequently, |Uii(T0p)|2 = 1, as expected for t = T0p.
For such a t , the situation is quite drastic since all the contributions from the δt (εk′ − εi)

of equation (38) give exactly zero. In the general case, i.e. for t �= T0p, we can identify two
different regimes for these δt terms, depending on the value of ηt compared with the possible
values of εk′ − εi. If ηt is much smaller than all these differences (see figure 1(a)), all the δt
terms of equation (38) are negligible with respect to 1/πηt . σ

(2)
ii (t) and Uii(t) are then given

by equations similar to equations (39) and (40) with ηT0p replaced by ηt . For such a small ηt ,
we have |Uii(t)|2 ≈ 1: there is no lifetime associated with the probability of staying in the
|ϕi〉 state. In contrast, if there are εk′ − εi differences smaller than ηt , the corresponding δt are
as large as 1/πηt (see figure 1(b)). Because of their exponential prefactor in equation (38),
these δt terms generate a complex contribution to σ (2)ii (t). The real part tends to decrease the
‘energy’ change of the |ϕi〉 state as given by second-order perturbation theory, equation (41),
while the imaginary part generates an imaginary contribution to this ‘energy’, i.e. a lifetime.
We can say that when ηt increases, i.e. when t decreases from T0p, ever more |ϕk′ 〉 states go
‘inside’ the sizeable part of the δt (εk′ − εi) curve. By doing so, they leave the sum giving the
energy shift, to join the states contributing to the lifetime.

In the following, we will be interested in the lifetime regime ofUii(t), i.e. in t large but not
too large, in order to have an εk′ − εi energy distribution similar to the lower curve of figure 1.

4. The large-time limit

4.1. Second-order term

Using equation (4), δt (ε, ε′) given in equation (35) also reads

δt (ε, ε
′) = cos(ε′/ηt ) δt (ε − ε′)− δt (ε)

ε′
− iπ δt (ε

′) δt (ε − ε′). (42)

For ηt small, δt (ε) is strongly localized around ε = 0, so the imaginary part of δt (ε, ε′)
looks like −iπ δt (ε′) δt (ε). Its real part looks like (−1/ε′) δt (ε) for ε′ large, while for ε′ small
we expect this 1/ε′ singular behaviour to be cut at a few ηt from zero since δt (ε, ε′) remains
finite when ε′ → 0. Consequently, we guess that the large-t limit of δt (ε, ε′) should be

1

−ε′ + iηt
δt (ε) = −

[
P̂t

(
1

ε′

)
+ iπ δ̂t (ε

′)
]
δ̂t (ε) (43)

where we have set

P̂t
(

1

ε

)
= ε

ε2 + η2
t

(44)

π δ̂t (ε) = ηt

ε2 + η2
t

. (45)
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δ̂t (ε), like δt (ε), is a function of width ηt which tends to the Dirac distribution in the small-ηt
limit. In order to prove that this guess is correct, and to estimate the correction accurately, we
rewrite δt (ε, ε′) as

δt (ε, ε
′) = δt (ε)

[
1

−ε′ + iηt
+

1

ηt
dt

(
ε

ηt
,
ε′

ηt

)]
(46)

which serves as a definition for dt (x, x ′). Using equation (35), we find

dt (x, x
′) = 1

x ′ − i
+

1

D(x)

D(x − x ′)−D(x)
x ′ (47)

with D(x) = (e2 i x − 1)/x. By inserting equation (46) into equation (33) we obtain

σ
(2)
fi (t) = δt (εf − εi)

[ ∑
k′

Vfk′ Vk′i

εi − εk′ + i ηt
+W(2)

fi (ηt )

]
. (48)

The sum is simply the matrix element

〈ϕf |V 1

εi −H0 + i ηt
V |ϕi〉 (49)

while the second term is defined as

W
(2)
fi (ηt ) = 1

ηt

∑
k′
Vfk′ Vk′i dt

(
εf − εi

ηt
,
εk′ − εi

ηt

)
. (50)

Since dt (0, x ′ 
 1) = i/2x ′2 + O(1/x ′3) while dt (0, x ′ 	 1) = x ′/3 + O(x ′2), the main
contributions toW(2)

ii (ηt ) in the ηt → 0 limit originate from εk′ lying within a few ηt from εi.
Here again, we find two different regimes:

(i) ηt is small enough for all the possible εk′ − εi to be much larger than ηt . We then have
W
(2)
ii (ηt ) ≈ 0

(ii) ηt is large enough for a large number of εk′ to lie within a few ηt of εi. Since εk′

appears in dt through xk′ = (εk′ − εi)/ηt , this reduced variable is then close to a continuous
variable. We can replace the sum over k′ by an integral over xk′ , so that for f = i

W
(2)
ii (ηt ) ≈

∫ +∞

(ε0−εi)/ηt

dxk′ V (εi + ηt xk′) dt (0, xk′) (51)

where ε0 is the ground state energy ofH0 and V (εk′) the result of the summation of |Vk′i|2 over
all variables but εk′ . Because ε0 < εi, the lower boundary of the integral tends to −∞ when
ηt goes to zero. When this lower boundary is exactly −∞, the integration contour of figure 1
shows that the integral is zero, the bracket of equation (51) having a single pole xk′ = i in the
upper half-plane. For ηt small, the dt (0, x ′ 
 1) limit used in the evaluation of the integral
between −∞ and (ε0 − εi)/ηt leads to

W
(2)
ii (ηt → 0) ≈ i ηt

V

2 (εi − ε0)
+ O(η2

t ) (52)

in which V (εk′) has been replaced by a constant V for evaluation purposes.
We thus conclude that, since the correction to the matrix element equation (49) appearing

in σ (2)fi (t) tends to zero as ηt when ηt goes to zero, we can retain this matrix element only in
the large-t limit of σfi(t) at second order in V .
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4.2. Third-order term

If we turn to the third-order term of σfi(t) we find, using equation (35), that δt (ε, ε′, ε′′) given
in equation (36) also reads

δt (ε, ε
′, ε′′) = 1

ε′ − ε′′
[

e−iε′/ηt

ε′
δt (ε − ε′)− e−iε′′/ηt

ε′′
δt (ε − ε′′)

]
+
δt (ε)

ε′ ε′′
. (53)

Its imaginary part, equal to

Im δt (ε, ε
′, ε′′) = −iπ

δt (ε
′) δt (ε − ε′)− δt (ε′′) δt (ε − ε′′)

ε′ − ε′′ (54)

looks like

−iπ

[
δt (ε

′)
−ε′′ +

δt (ε
′′)

−ε′
]
δt (ε) (55)

for ε′ and ε′′ large compared to ηt while the real part of δt (ε, ε′, ε′′) looks like δt (ε)/ε′ε′′ in the
same limit. However, because δt (ε, ε′, ε′′) stays finite for ε′ or ε′′ → 0, we expect the above
singularities in 1/ε′ and 1/ε′′ to be cut at a few ηt from zero. This leads us to guess that the
large-t limit of δt (ε, ε′, ε′′) should be

1

(−ε′ + i ηt ) (−ε′′ + i ηt )
δt (ε) (56)

for large t . In order to verify this guess and to estimate the correction precisely, we rewrite
δt (ε, ε

′, ε′′) as

δt (ε, ε
′, ε′′) = δt (ε)

[
1

(−ε′ + i ηt ) (−ε′′ + i ηt )
+

1

η2
t

dt (ε/ηt , ε
′/ηt , ε′′/ηt )

]
(57)

which serves as definition for dt (x, x ′, x ′′). By inserting this equation into the definition of
σ
(3)
fi (t), we find

σ
(3)
fi (t) = δt (εf − εi)

[ ∑
k′k′′

Vfk′ Vk′k′′ Vk′′i

(εi − εk′ + i ηt ) (εi − εk′′ + i ηt )
+W(3)

fi (ηt )

]
. (58)

The sum is simply

〈ϕf |V 1

εi −H0 + i ηt
V

1

εi −H0 + i ηt
V |ϕi〉 (59)

while the second term is given by

W
(3)
fi (ηt ) = 1

η2
t

∑
kk′
Vfk′ Vk′k′′ Vk′′i dt

(
εf − εi

ηt
,
εk′ − εi

ηt
,
εk′′ − εi

ηt

)
. (60)

We show in the appendix thatW(3)
fi (ηt ) goes to zero when ηt → 0.

4.3. Large-t limit of Ufi(t)

Calculations similar to the above lead to higher-order σ (n)fi (t) having the same form, so that,
for n→ ∞, we can sum up all these terms, using equation (28), as

Ufi(t) = e−i(εf +εi) t/2h̄

{
δfi − 2iπδt (εf − εi)

[
〈ϕf |V + V

1

εi −H + i ηt
V |ϕi〉 + O(ηt )

]}
(61)

the correction O(ηt ) originating from the sum of all the correctionsW(n)

fi (ηt ). However, since
δt (0) = 1/πηt , this correction for f = i has to go to zero faster than ηt in order to give a
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negligible contribution to the large-t limit of Uii(t). Let us forget this correction O(ηt ) for a
while and see what we obtain from the other terms of Ufi(t), called Ûfi(t). They are quite
similar to the result usually quoted for the generalized Fermi golden rule (equations (2) and (3)),
except that η is replaced by ηt . By performing the same manipulation as in equations (10)
and (11), we now obtain

〈ϕf |V + V
1

εi −H + i ηt
V |ϕi〉 = i ηt

[
−〈ϕf |ϕi〉 + 〈ϕf | εi − εf + i ηt

εi −H + i ηt
V |ϕi〉

]
(62)

so that for f = i equations (61) and (62) lead to

Ûii(t) = e−iεi t/h̄

{
1 − 2iπ

1

πηt
i ηt

[
−1 + 〈ϕi| i ηt

εi −H + i ηt
V |ϕi〉

]}

= e−iεi t/h̄ 〈ϕi| i ηt − (εi −H)
i ηt + (εi −H) |ϕi〉. (63)

Equations (61) and (63), which follows directly from it, are the key results of our paper.
The reader may be surprised by this new expression of Ûii(t). To reassure him or her, we
can already check that it does give the expected result up to second order in V . Indeed,
equation (63) also reads

Ûii(t) = e−iεi t/h̄ 〈ϕi|1 − 2
εi −H

i ηt + εi −H |ϕi〉. (64)

Using equations (10) and (28), its lowest-order terms are

Ûii(t) ≈ e−iεi t/h̄

[
1 + 2 〈ϕi|

(
1

i ηt + εi −H0
+

1

i ηt + εi −H0
V

1

i ηt + εi −H0
+ · · ·

)
V |ϕi〉

]

≈ e−iεi t/h̄

[
1 +

2

i ηt
〈ϕi|

(
1 + V

1

i ηt + εi −H0
+ · · ·

)
V |ϕi〉

]
. (65)

The V 2 matrix element being

V 2
ii

i ηt
+

∑
k �=i

|Vki|2
εi − εk + i ηt

(66)

while 2/i ηt = −it/h̄, we thus find

Ûii(t) = e−iεi t/h̄

[
1 − it Vii

h̄
+

1

2

(−it Vii

h̄

)2

− it

h̄

∑
k �=i

|Vki|2
εi − εk + i ηt

+ O(V 3)

]
(67)

which is exactly what we want:

(i) If ηt is much smaller than all possible εk − εi, we can discard it from the last term. We
then find

Ûii(t) = e−iε̃i t/h̄ (68)

where ε̃i is obtained from second-order perturbation theory, as in equation (41). For such
ηt , we find |Ûii(t)|2 ≈ 1, so the system is not in its ‘lifetime’ regime.

(ii) If ηt is larger than many εk − εi, the sum of equation (67) may be expressed as∑
k �=i

|Vki|2
[
P̂t

(
1

εi − εk

)
− iπ δ̂t (εi − εk)

]
(69)

using the definitions of equations (44) and (45). Equation (67) then gives

Ûii(t) ≈ e−iεi t/h̄

{
1 − it

h̄

[
Vii +

∑
k �=i

|Vki|2 P̂t
(

1

εi − εk

)]
+

1

2

(−it Vii

h̄

)2

− t '(t)
2

}

≈ e−iε̃i(t) t/h̄ e−t '(t)/2 (70)
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with '(t) defined as

'(t) = 2π

h̄

∑
k �=i

|Vki|2 δ̂t (εk − εi). (71)

When t increases, '(t) tends to the lifetime of the usual Fermi golden rule, provided that
many εk are still under the sizeable part of the δ̂t (ε) curve, i.e., ηt is still large enough for
the spectrum of H0 to look like a continuum on the ηt scale. The phase part of Ûii(t) is
now related to a ‘time-dependent energy’ ε̃i(t) given by

ε̃i(t) = εi + Vii +
∑
k �=i

|Vki|2 P̂t
(

1

εi − εk

)
(72)

which tends to the energy of the second-order perturbation theory when ηt goes to zero.

We thus conclude that, although rather surprising at first, the above equation (63) forUii(t)

is correct at least up to second order in V .

5. Discussion

From a careful study of the expansion of Ufi(t) in the large-t limit, we have generated a
dominant term Ûf i(t) similar to the usual expression given in equations (2) and (3), except that
η = 0+ is replaced by ηt . This change is crucial since it links t and η. It of course affectsUii(t),
which is no longer equal to unity—as discussed in section 2—but is now given by equation (63).
It also affects Uf �=i(t) at second order in V . We now comment on the consequences of this
change for both quantities.

5.1. Consequence of our new Ûfi(t) at second order in V

From equation (61), we find that Tfi has to be replaced by

Tfi(t) = 〈ϕf |V + V
1

εi −H + iηt
V |ϕi〉 (73)

which depends on t through ηt . Up to second order in V , it reads

Tfi(t) = Vfi +
∑
n

Vfn Vni

[
P̂t

(
1

εi − εn

)
− iπ δ̂t (εi − εn)

]
+ O(V 3) (74)

while, at the same order in V , Tfi, defined in equation (3), is

Tfi = Vfi +
∑
n

Vfn Vni

εi − εn + O(V 3) (75)

if we impose Vii = 0 (by assuming this diagonal term has been included in H0) in order to
avoid the divergence of the sum. Note that, by setting Vii = 0, one also eliminates a term,
−iπ Vfi Vii, that equation (3) would otherwise generate.

The first-order term of Tfi(t) or Tf i may be viewed as a direct transition between |ϕi〉
and |ϕf〉 while the second-order term corresponds to a set of two-step processes with virtual
transitions toward intermediate states |ϕn〉. We see from equation (74) that the intermediate
states appearing in the real part of Tfi(t) can have an energy quite different from εi, while those
appearing in the imaginary part must be separated in energy by at most a few ηt from εi.

(i) Let us first consider systems in which direct transitions are possible between |ϕi〉 and a
set of states |ϕf〉 close in energy. Such a system has states with Vfi �= 0 lying within
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η2t = ηt/2 from εi: indeed, the direct transition probability toward these states changes
with time as

d

dt

∑
f

|Ufi(t)|2 �
∑

f

4π2 |Vfi|2 d

dt
δ2
t (εf − εi)

� 2π

h̄

∑
f

|Vfi|2 δ2t (εf − εi) (76)

so that, δ2t (ε) being a function of witdh ηt/2, this direct transition rate is governed by
the |ϕf〉 states lying at ηt/2 from εi. These |ϕf〉 states (with some others since δ̂t (ε) is
a broader function of width ηt ) enter the imaginary part of Tfi(t) and are excluded from
the real part at second order in V . Consequently, for systems with large couplings in
which this second-order term is not negligible with respect to the first one, the change
from Tfi(t) to Tfi in which all the coupled |ϕf〉 enter the real part at second order in V
must be accessible to experiments. Moreover, in systems such as mesoscopic systems in
which the discreteness of the energy spectrum is appreciable, it should also be possible to
differentiate states at ηt/2 from εi, such as those appearing in the first-order transition rate,
from states at ηt from εi, such as as those appearing in the second-order term of Tfi(t).

(ii) For systems in which direct transitions to |ϕf〉 states close in energy to εi are impossible,
the corresponding Vf i being zero, the δ̂t term of equation (74), which selects such states,
gives zero. Similarly, the |ϕn〉 which are excluded by P̂t

(
1

εi−εn
)

do not contribute to the
sum of Tfi, their Vni being zero, so the sums of Tfi(t) and Tfi are essentially equal (with a
possible exception for mesoscopic systems in which states with Vfi �= 0 would exist at ηt
from εi but not at ηt/2).

We conclude that the replacement of ηt by 0+ in Tfi(t) is valid for the lowest nonzero
term of Tfi(t) (which is first order if direct transitions are possible and second order if not).
However, this replacement modifies the next nonzero term, so that if the couplings are large
enough for this next-order term to give a sizeable contribution the difference between our new
result equation (61) and the previous one equations (2), (3) should be accessible to experiments,
mesoscopic systems being most probably the best candidates.

5.2. On the validity of the overall procedures

The expression of Tfi given in equation (3) with η = 0+ instead of ηt originates basically from
a limit t → ∞ taken too early in some of the terms of Ufi(t). Beside this problem, there is
no reason to suspect any other difficulty with the procedures themselves, when handled with
care. We will now show why our Ûii(t) leads us to think that these procedures have indeed to
be questioned.

(i) It is actually quite easy to compare Ûii(t) to the exact Uii(t), since we can rewrite
equation (63) as

Ûii(t) = e−iεi t/h̄ 〈ϕi| 1 + i (εi −H)/ηt
1 − i (εi −H)/ηt |ϕi〉 (77)

and the exact Ufi(t), equation (1), for f = i

Uii(t) = e−iεi t/h̄ 〈ϕi|e2 i (εi−H)/ηt |ϕi〉 (78)

since t/h̄ = 2/ηt . By inserting the closure relation for the eigenstates of H in front of
|ϕi〉, these two matrix elements correspond to∑

k

|〈φk|ϕi〉|2 A
(
εi − Ek
ηt

)
(79)
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Figure 2. The real and imaginary parts of the A(x) functions associated with the exact evolution
operator (thin curve) and the approximate evolution operator (thick curve) as obtained from the
standard perturbative procedure.

with A(x) = e 2 i x for Uii(t), and A(x) = (1 + i x)/(1 − i x) for Ûii(t), respectively. The
real and imaginary parts of these twoA are shown in figure 2. They are close to each other
for x small only so that Ûii(t) is close to Uii(t) when the |φk〉 which give nonvanishing
|〈φk|ϕi〉|2 are such that the corresponding (εi − Ek)/ηt are small. Even so, since the two
A(x) differ at third order in x, Ûii(t) cannot provide a reliable estimate of Uii(t) beyond
second order in (εi − Ek)/ηt .

(ii) If we now compare equation (77) to (78), we see that Ûii(t) is just obtained by rewriting
the exact evolution operator as

e2 i (εi−H)/ηt = ei (εi−H)/ηt

e−i (εi−H)/ηt (80)
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and by replacing the numerator and denominator by their first-order terms, namely

1 + i (εi −H)/ηt
1 − i (εi −H)/ηt . (81)

We can note that these first-order terms already provide an expansion of the ratio valid
up to second order, so that the second-order terms of the numerator and denominator in
equation (80) would not help to increase the validity of Ûii(t). It is important to stress
that this nontrivial approximation procedure generates an evolution operator which is still
unitary while a naive expansion of the left-hand side of equation (80) up to second order
loses this important property. This naive expansion would give an expectation value

〈ϕi|1 + 2 i
εi −H
ηt

+
1

2

(
2 i
εi −H
ηt

)2

+ · · · |ϕi〉 = 1 − it

h̄
Vii +

1

2

∑
k

(
− it

h̄
Vki

)2

+ · · ·

(82)

rather different from that obtained in equation (67), when using equation (81). As could
be expected, the unitarity of the approximate evolution operator plays a crucial role in
obtaining the correct (second-order) Fermi golden rule.

(iii) Although (H − εi) is V only when acting on |ϕi〉, it is reasonable to doubt the possibility
for an approximate evolution operator valid up to second order in (εi −H)/ηt to give an
expectation value valid beyond second order in V . We have already shown in section 4.3
that Ûii(t) is indeed correct up to V 2. Let us now compare the third-order term of Ûii(t)

with the expansion of e−iε̃i t/h̄. From equations (64) and (65), this third-order term reads

−it

h̄

∑
mn

Vin Vnm Vmi

(εi − εn + i ηt ) (εi − εm + i ηt )
= 1

4

(−it Vii

h̄

)3

+

(−it

h̄

)2

Vii

∑
n �=i

|Vin|2
εi − εn + i ηt

+

(−it

h̄

) ∑
n�=i
m�=i

Vin Vnm Vmi

(εi − εn + i ηt ) (εi − εm + i ηt )
(83)

while the third-order term of the energy ε̃i can be obtained from the exact Brillouin–Wigner
equation it verifies, namely

ε̃i = εi + 〈ϕi|V + V P⊥
1

ε̃i −H P⊥ V |ϕi〉 (84)

where P⊥ is the projection operator on the |ϕn�=i〉 subspace. Equation (84) leads to

ε̃i = εi + Vii + 〈ϕi|V P⊥
1

εi + Vii −H0 − V P⊥ V |ϕi〉 + O(V 4) (85)

so that, from
1

εi + Vii −H0 − V = 1

εi −H0
+

1

εi −H (V − Vii)
1

εi −H0
+ O(V 2) (86)

the third-order term of ε̃i is given by∑
n�=i
m�=i

Vin Vnm Vmi

(εi − εn) (εi − εm) − Vii

∑
n�=i

|Vin|2
(εi − εn)2 . (87)

Using this result along with the first two terms of ε̃i already given in equation (41), we can
easily check that the third-order term of the expansion of e−iε̃i t/h̄ differs from equation (83)
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by a prefactor 1/3! instead of 1/4 in front of V 3
ii , and by the absence of a term equivalent

to the last term of equation (87). This proves that Ûii(t) is incorrect at third order in V
already.

(iv) It is rather disappointing to conclude that, even though Ûii(t) contains higher-order terms
inV , its validity does not go beyond that of the second-order golden rule. This a posteriori
shows that the sum of the remainders of σ (m)fi (t), discarded when simplifying Ufi(t) into
Ûfi(t), most probably gives a contribution as large as the sum of the higher-order leading
terms of σfi(t). Actually, the expression (78) of the exact evolution operator shows in a
transparent way that ηt and εi −H , i.e. V when acting on |ϕi〉, are strongly coupled since
they appear through (εi −H)/ηt only. Therefore, there is a priori no hope of producing
an approximate evolution operator valid for small ηt , i.e. for large t , which is not also
some kind of expansion in V .

(v) In relation with the link between Ûii(t) and the exact Uii(t), we may also note that

e2 i (εi−H)/ηt =
(

ei (εi−H)/nηt

e−i (εi−H)/nηt

)n
= lim
n→∞

(
1 + i(εi −H)/ηt/n
1 − i(εi −H)/ηt/n

)n
(88)

so that the approximate evolution operator appearing in Ûii(t) corresponds to taking n = 1
instead of the limit n → ∞. The validity of such a replacement is clearly questionable,
as in the large-t limit, ηt/n is small for n = 1, but infinite for n→ ∞. When n increases,
ever more states of energies close to εi play a role in the calculation of the corresponding
expectation value (their (εi −H)/ηt/n becoming small), whereas these states would play
no role if n = 1.

5.3. On the connection with scattering theory

Let us make a last comment in relation to some misleading ideas associated with the expression
of Tfi. It is often said that the generalized Fermi golden rule given in equations (2) and (3) has
to be related to scattering theory and can be derived from a Green function approach [2, 4, 9].
Such a connection is in fact inappropriate since the two problems are different4.

The problem addressed in this paper corresponds to taking a system in an initial state |ϕi〉,
an eigenstate of H0, and to calculating its time evolution in the large-t limit when the system
Hamiltonian is a (strictly) time-independent HamiltonianH = H0 +V . In this problem, there
is only one small parameter homogeneous to an energy: ηt .

In the derivation of scattering theory using a Green function approach, one basically
considers that the particle feels a time-dependent interaction which is introduced adiabatically.
There is then another small parameter η, originating from the adiabatic approach. Being time
independent, it can dominate ηt in the large-t limit. It is then necessary to state which of the
two small parameters, η or ηt , goes to zero first. The answer depends on the nature of the
physical problem under consideration.

It is important to notice that in the work presented here, relaxation, i.e. the occurrence of a
lifetime, is intrinsic, being induced by a small but finite ηt on the eigenenergy scale. In contrast,
in scattering theory, relaxation is somewhat extrinsic, as it originates from enforced adiabaticity.

6. Conclusion

We have studied the time evolution of an initial state |ϕi〉, an eigenstate ofH0, when the system
has a time-independent Hamiltonian H , and we have looked for a Fermi golden rule beyond

4 It is striking enough to note that in [12] the transition rate is given up to second order inV only when the perturbation
is time independent. In contrast, when the perturbation is assumed to be introduced adiabatically, in eλ t with λ→ 0−,
higher-order terms in V of this transition rate are given.
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second order in V = H −H0.
We have first shown that the result previously quoted in the literature for this generalized

golden rule is meaningless because of the presence of a spurious η → 0+ limit, which cannot
be taken strictly as written.

In order to proceed in a safe way, we have considered Hamiltonians with discrete spectrum
only, and we have shown that this discrete spectrum can be considered as a continuum if t
is such that the possible eigenenergy differences around the initial-state energy εi are small
compared to ηt = 2 h̄/t . This parameter, which turns out to be the key parameter of the
problem, is just the energy scale of the uncertainty principle.

We have performed aV expansion of the time evolution of |ϕi〉. From a careful study of the
first few terms of this V expansion, we have identified the form of the dominant contributions
in the small-ηt limit. Their summation generates a result similar to the previous one, except
for the replacement of η by ηt . This crucial change restores a meaningful result, which now
reads

〈ϕi|e−iHt/h̄|ϕi〉 ≈ e−i εi t/h̄ 〈ϕi| i ηt − (εi −H)
i ηt + (εi −H) |ϕi〉. (89)

When calculated up to second order in V , we have checked that this new generalized
golden rule agrees with the usual one. However, if we rewrite the left-hand side of the above
equation in terms of ηt , we see that its right-hand side simply results from an appropriate
expansion in (εi −H)/ηt , which preserves unitarity but which is valid up to second order only.
This leads us to conclude that, although the new generalized golden rule originates from a
summation of V n dominant terms, up to infinity, it is not valid beyond second order in V . The
reason for this disappointing conclusion is quite profound. As H − εi is nothing but V when
acting on |ϕi〉 while εi − H and ηt appear only through (εi − H)/ηt in the exact evolution
operator, there is no way to produce an approximate expression of this evolution operator that
is valid in the large-t limit and not restricted to small V only.
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Appendix. Estimation of W (3)
fi (ηt) in the small ηt limit

From equations (34) and (57), we obtain dt (x, x ′, x ′′) as

dt (x, x
′, x ′′) = −1

(x ′ − i) (x ′′ − i)
+

1

x ′′D(x)

×
(
D(x − x ′)−D(x − x ′′)

x ′ − x ′′ − D(x − x ′)−D(x)
x ′

)
. (A.1)

Because dt (x, x ′, x ′′) is large for small x ′ and x ′′ only, the εk and εk′ contributing toW(3)
fi (ηt )

given in equation (60) lie within a few ηt from εi, so that if, for such εk and εk′ , the spectrum of
H0 looks like a continuum on the ηt scale, we can replace the sums over εk and εk′ by integrals
over xk and xk′ . We then obtain for f = i

W
(3)
ii (ηt ) =

∫ ∫ ∞

(ε0−εi)/ηt

dxk′ dxk′′ V (εi + ηt xk′ , εi + ηt xk′′) dt (xf , xk′ , xk′′) (A.2)
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where V (εk′ , εk′′) is the result of the summation of Vik′ Vk′k′′ Vk′′i over all variables but energies.
Let us rewrite dt (x, x ′, x ′′) as

dt (x, x
′, x ′′) = 1

D(x)

[
g(x, x ′, x ′′) + g̃(x, x ′, x ′′)

]
(A.3)

where g(x, x ′, x ′′) and g̃(x, x ′, x ′′) are given by

g(x, x ′, x ′′) = i

(x ′ − i) (x ′′ − i)

[
(1 + i x ′)D(x − x ′)−D(x)

x ′

]
(A.4)

g̃(x, x ′, x ′′) = 1

x ′′

[
D(x − x ′)−D(x − x ′′)

x ′ − x ′′ +
i

x ′′ − i

D(x − x ′)−D(x)
x ′

]
. (A.5)

In order to show thatW(3)
ii (0) = 0, we use again the integration contour of figure 1. When

ηt = 0, V is a constant. If we consider the first term of dt (x, x ′, x ′′), we find that the integration
of g(x, x ′, x ′′) over x ′ gives zero on the lower half circle while g(x, x ′, x ′′) has only one pole
at x ′ = i, so that∫ +∞

−∞
dx ′ g(x, x ′, x ′′) = 0. (A.6)

We are left with the integration over x ′′, which unfortunately diverges logarithmically
when x ′′ → ∞. Actually, this divergence is spurious since it originates from the brutal
replacement of ηt by zero in V , which makes V (εk′ , εk′′) constant. If we keep ηt finite and
invoke the natural convergence of V (εk′ , εk′′) at large εk′ , which can be mimicked by a cut-off
εm, the integral over x ′′ reads

V

∫ (εm−εi)/ηt

(ε0−εi)/ηt

dx ′′ i

x ′′ − i
(A.7)

which remains finite when ηt goes to zero. Similarly, the integration of g̃(x, x ′, x ′′) over x ′′

gives zero over the lower half circle while g̃(x, x ′, x ′′) has only one pole at x ′′ = i, so the
integration of g̃(x, x ′, x ′′) over x ′′ gives zero for ηt = 0. A similar logarithmic divergence
in the integration over x ′ can be dealt with in the same way as above. Therefore, W(3)

ii (0) is
indeed zero. It is possible to show that W(3)

ii (ηt ) has a regular behaviour and tends to zero as
W
(2)
ii (ηt ), when ηt goes to zero.
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